The archaeology of Britain’s first modern humans

Rob Dinnis*

The sites of the first modern humans who occupied what is now Britain have been reduced to a handful by subsequent glaciation and the rise in sea level, and their assemblages have been further depleted because early excavators ignored the microliths. Confronting the challenges of this exiguous material, the author succeeds in painting a vivid picture of Aurignacian hunters following prey down the now submerged Channel River Valley, colonising the preferred hilly zones at the west of Britain. The presence of two types of bladelet manufacture suggests a lengthy or repeated period of subsequent occupation.

Keywords: Britain, Europe, Upper Palaeolithic, Aurignacian, Paviland burin, burin busqué

Introduction: the Aurignacian

Indigenous European Neanderthals were replaced by incoming modern humans about 40–35 000 BP. Although the intricacies of this event continue to be debated, there is broad consensus that the Aurignacian culture (c. 38–30 000 BP) was created by the first modern humans to successfully occupy the entire continent (e.g. Kozłowski & Otte 2000; Davies 2001; Zilhão & d’Errico 2003; Conard 2006; Zilhão 2006; Mellars et al. 2007; Jöris & Street 2008; Bailey et al. 2009). European Aurignacian assemblages are found from Russia in the east, to Britain, France and Iberia in the west. These assemblages contain conspicuous evidence for many capabilities and behaviours associated with extant humans, including complex language, music and symbolic material culture (e.g. Vanhaeren & d’Errico 2006; Conard 2009; Conard et al. 2009).

The last decade has seen significant advances in our understanding of the Middle–Upper Palaeolithic transition (e.g. d’Errico et al. 1998; Tostevin 2000; Bon 2002; Bordes 2005; Higham et al. 2010). Much work has been carried out on the long stratigraphies and rich assemblages of southern and south-western Europe. But, although with some notable exceptions (e.g. Jacobi 2007; Flas 2008; White & Pettitt 2011), the far north-west of
The archaeology of Britain’s first modern humans

Europe, and particularly Britain, has, by comparison, been left behind. Upper Palaeolithic Britain was the scene of only sporadic and marginal human occupation, leaving a meagre archaeological record of the period (Garrod 1926; Pettitt 2008; Jacobi & Higham 2011). Combined with problems of imprecision resulting from its early excavation, the British Aurignacian has therefore hitherto been very difficult to interpret.

The re-examination of British Aurignacian material reported here has been encouraged by a recent advance in methodology. Many characteristically Aurignacian lithic ‘burin’ and ‘scraper’ artefacts—previously seen as tools—have been shown to be exhausted cores used to produce bladelets (Le Brun-Ricalens et al. 2005). Studies of these cores and their associated bladelets have highlighted chronological and cultural differences in manufacture and form, with marked differences between the earlier Aurignacian (i.e. Proto-Aurignacian and Early Aurignacian) and the later Aurignacian (Bon 2002; Bordes 2005). These insights have allowed old collections to be examined afresh, and answers to archaeological questions found where previously there were only dead ends.

The continental north-western European Aurignacian

Forty-two sites in what is now northern France, Belgium, Luxembourg and north-western Germany have yielded Aurignacian material (Figure 1). When compared with larger sites in south-western Europe most of these are small assemblages, and they often lack detailed information regarding excavation, stratigraphic context and curatorial history. Exceptions include the stratified Middle–Upper Palaeolithic sequence from Grotte du Renne and the larger Early Upper Palaeolithic cave sites in Belgium which, whilst lacking precise stratigraphic data, contained abundant Aurignacian material (e.g. Trou Magrite, Spy, Goyet). Previously, it has been suggested that only later Aurignacian is present north of 47° N (Djindjian et al. 1999) and certainly, when compared to south-western Europe, most sites are of later Aurignacian type. However, Grotte du Renne level VII is now acknowledged as Proto-Aurignacian, with characteristic large Dufour bladelets (Bon 2002), and new radiocarbon dates demonstrate its early Aurignacian age (c. 35 000 BP; Higham et al. 2010). Although undated, Dufour bladelets from Beg ar C’hastel (north-west France) are morphologically comparable to those from Grotte du Renne (compare the figures of Bon [2006: 140] with those of Giot & Monnier [1976: 1313]). In Belgium, large collections from Spy, Goyet and Trou Magrite include some lithic artefacts more typical of the earlier Aurignacian, with typically earlier Aurignacian split-base osseous points found at five Belgian sites (Otte 1979).

Among the later Aurignacian assemblages inter-site variability has been noted. At some sites bladelet production was carried out using ‘scraper’ artefact methods, e.g. Altwies (Brou et al. 2006) and Grotte de la Cave (Otte 1979), while ‘burin’ methods were preferred at others, e.g. Gohaud, Trou du Renard (Dinnis 2009). Additionally, true Vachons burin bladelet cores, usually considered markers of the latest Aurignacian (Pesesse & Michel 2006), are present at Spy (Otte 1979). Current research is focused on understanding this variation, which is likely to be the result of chrono-cultural change during the Aurignacian.

The apparent predominance of later over earlier Aurignacian sites in north-western Europe may simply reflect occupation intensity, particularly given the traditional association of the ‘classic’ earlier Aurignacian with a cold climate, and the later Aurignacian with

© Antiquity Publications Ltd.
warmer conditions and a terrestrially observable interstadial event (Djindjian et al. 1999). An enhanced human presence at more northerly latitudes during the later Aurignacian would therefore be unsurprising. With this possibility in mind, we can examine the north-westernmost extension of Aurignacian territories: the British peninsula.

The British Aurignacian

‘Britain’ in the Upper Palaeolithic period refers to the north-western corner of continental Europe, and forms the westernmost extension of the great Northern European Plain (Figure 1). Dominating this corner of Europe was the now submerged Channel River Valley,
draining northern France, southern and south-central England, western Belgium and large areas of north-central Europe via the Rhine/Meuse system. This vast river played a huge role in shaping the Upper Palaeolithic of Britain (Pettitt 2008).

All known British Aurignacian material comes from poorly- or un-stratified assemblages, excavated before modern archaeological controls. For example, at Goat’s Hole, Paviland (hereafter ‘Paviland’), no stratigraphy was apparent to Sollas during his 1912 excavations; thus no spatial data was collected (Sollas 1913). The Paviland lithic assemblage contains material from the Lincombian-Ranisian-Jerzmanowician (LRJ), believed to be a late Neanderthal industry (e.g. Jacobi 1999; Flas 2008; Jöris & Street 2008), together with several modern human industries (Aurignacian, Gravettian, Late Upper Palaeolithic, Mesolithic) (Swainston 2000). To pluck Aurignacian artefacts from such a mixed assemblage necessitates the strictest selection criteria. Consequently, material suitable for study (Table 1) is a small fraction of the Aurignacian material actually collected.

The western distribution of British Aurignacian sites is striking, and has been noted and discussed by many (e.g. Garrod 1926; Jacobi 2007; Pettitt 2008; Flas 2009). It is a genuine reflection of the distribution of Aurignacian material and not simply an artefact of differential survival/recognition, since archaeology attributable to late Neanderthals (Mousterian and LRJ) and to the Gravettian has been found across England. For Jacobi (1999) and Pettitt (2008), the restriction of Aurignacian sites to western Britain suggested a southern origin, with mobile hunter-gatherers negotiating their way from north-west France and across the mouth of the Channel River. As Pettitt (2008) pointed out, this would have taken them into geographically familiar landscapes to the north of the river. For Aldhouse-Green (2004) this coastal movement may have originated farther south, in the Aurignacian heartlands of south-western France.

As noted previously, artefacts in British collections bear greater similarity to later rather than earlier forms of the Aurignacian (e.g. Campbell 1980; Aldhouse-Green & Pettitt 1998; Jacobi & Pettitt 2000; Swainston 2000). Admittedly, later Aurignacian artefacts (e.g. burins busqués, Vachons burins) are more diagnostic and therefore more liable to be identified and noted. But despite this, earlier Aurignacian assemblages do contain characteristic artefacts (e.g. long Dufour bladelets, large carinated scrapers, split-base osseous points), which are apparently absent from Britain. A late chronology for the British Aurignacian is supported by radiocarbon data of c. 32 000 BP (from the three osseous artefacts in Table 1). This age is consistent with the presence of burins busqués in British collections, and in well-dated south-western French and Belgian assemblages 33–31 000 BP (Table 2).

It has been proposed that British Aurignacian occupation corresponded to a short, warm climatic event, with various suggestions that it occurred during one of Greenland Interstadial 5 (GI5), GI6 or GI7 (Jacobi et al. 2006; Dinnis 2008; White & Pettitt 2011). Correction of the radiocarbon data in Table 2 using OxCal (Bronk-Ramsey 2009; Reimer et al. 2009) and comparison against the ice-core climate record of Svensson et al. (2008) actually indicates that initial occupation probably took place slightly earlier: during, or at very least shortly following, GI8. GI8 is the most significant warm event recorded in the Greenland ice-cores during the lifetime of the Aurignacian, in both its amplitude and its longevity. During this period environments would have had longer to respond to climatic warming, and this would surely have favoured a northward expansion of hunter-gatherer ranges.

© Antiquity Publications Ltd.
Table 1. Diagnostic Aurignacian artefacts from British sites (Jacobi & Pettitt 2000; Jacobi et al. 2006; Dinnis 2009; Jacobi & Higham 2011).

<table>
<thead>
<tr>
<th>Site</th>
<th>Lithic artefacts</th>
<th>Osseous artefacts</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paviland burin</td>
<td>Carinated burin</td>
<td>Burin busqué</td>
</tr>
<tr>
<td>Paviland</td>
<td>23</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Kent’s Cavern</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ffynnon Beuno</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hoyle’s Mouth</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Aston Mill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uphill Quarry</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hyaena Den</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin Hole, Creswell Crags</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 2. Chronological data from British and continental European sites used to date the Aurignacian occupation of Britain.

<table>
<thead>
<tr>
<th>Site</th>
<th>Radiocarbon age</th>
<th>Material dated</th>
<th>Reference</th>
<th>Relationship with British Aurignacian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uphill Quarry (UK)</td>
<td>31 730±250 (OxA-13716)</td>
<td>Point fragment</td>
<td>Jacobi et al. 2006</td>
<td>Characteristic Aurignacian point-type (lozangic) (Jacobi & Pettitt 2000).</td>
</tr>
<tr>
<td>Hyaena Den (UK)</td>
<td>31 550±340 (OxA-13803)</td>
<td>Point fragment</td>
<td>Jacobi et al. 2006</td>
<td>Similar in age to point from nearby Uphill Quarry. Both points therefore likely relate to contemporary occupation (Jacobi et al. 2006).</td>
</tr>
<tr>
<td>Pin Hole, Creswell Crags (UK)</td>
<td>32 640±340 (OxA-15053)</td>
<td>Humanly modified antler</td>
<td>Jacobi & Higham 2011</td>
<td>Undiagnostic, but too young to belong to the LRJ and too old to belong to the Gravettian. Comparable in age to more securely Aurignacian artefacts.</td>
</tr>
<tr>
<td>Abri Pataud level 7 (France)</td>
<td>Four radiocarbon dates, all 33–32 000 BP</td>
<td>Humanly modified animal bone</td>
<td>Higham et al. 2011</td>
<td>Contains burins busquets and a lozangic point comparable to those found in Britain.</td>
</tr>
<tr>
<td>Abri Pataud level 6 (France)</td>
<td>Four radiocarbon dates, all 32–31 000 BP</td>
<td>Humanly modified animal bone</td>
<td>Higham et al. 2011</td>
<td>Contains burins busquets comparable to those found in Britain.</td>
</tr>
<tr>
<td>Maisières Canal (Belgium)</td>
<td>c. 33–32 000 BP</td>
<td>Well-dated pedological stratigraphy</td>
<td>Haesaerts 2004</td>
<td>Contains burins busquets comparable to those found in Britain.</td>
</tr>
</tbody>
</table>
The two artefact types that best characterise the British Aurignacian are the *burin busqué* and Paviland burin (Figure 2) (Dinnis 2008, 2009). Both are exhausted bladelet cores and appear to reflect two distinct strategies for creating morphologically similar bladelets (Figure 3). These bladelets were short (10–20mm), curved through their length and on their left margin, with an axial anticlockwise torsion. This bladelet morphology is common in the later Aurignacian. The Paviland burin method of bladelet manufacture is the defining feature of the British Aurignacian (Dinnis 2008; Table 1). Paviland burins have been recorded in only three large southern French assemblages: Le Piage, Abri Castanet and Grotte de Font-Yves (Dinnis 2009; see also Bordes 2005). Despite these collections containing many bladelet cores, none of these sites have produced more than two or three Paviland burins. No Paviland burins are known from northern France. After Paviland, the two assemblages where they are most numerous are both Belgian caves: Trou Magrite (13) and Spy (four).

The *burin busqué* bladelet production technique—another defining aspect of British Aurignacian behaviour—was used more widely but, significantly, has not been identified immediately south of Britain. Although Gouédo (1996: 13) described three artefacts from
Herbeville as “burins busqués atypique”, the illustrated examples are too atypical to warrant this classification. Burins busqués in north-central or north-western France are instead found south of the Channel River basin, in the Loire basin, e.g. Gohaud, Grand-Claye (Allard & Gruet 1976; Allard 1978). Conversely, burins busqués have been recovered from numerous sites in the Somme basin—one of the main tributaries of the Channel River, e.g. Rouvroy, Attilly, Belloy-en-Santerre (Fagnart 1988). They are likewise abundant in larger Belgian cave assemblages (Spy, Goyet), smaller Belgian cave assemblages (e.g. Trou du Renard) and at the open-air site at Maisières Canal (Otte 1979; Flas et al. 2006).

Undoubtedly, the shared presence of these two bladelet production techniques demonstrates cultural similarity between Britain and north-eastern France/Belgium. This is convincing evidence for an eastern origin for the British Aurignacian, but also raises other important questions. First, given an eastern origin, why is Aurignacian material present only in western Britain? And second, what role did the Channel River play in establishing and maintaining the human geographies of the north-west European Aurignacian?

Colonisation

As frequently emphasised, major river systems offer directional routes through landscapes, and models of initial modern human dispersal often reference their role (e.g. Davies 2001; Conard & Bolus 2003). Of equal importance is that migratory fauna—with which all Upper Palaeolithic hunting strategies were interrelated in some way—would have used these same pathways. Correlation between major rivers and human activity and movement can therefore be argued for much, if not all, of the Upper Palaeolithic.

Throughout the Aurignacian, this correlation appears particularly pronounced, regardless of initial colonisation dynamics. Movement of Aurignacian lithic material in the Périgord is oriented along major river valleys, whereas similar patterns are not apparent later in the Upper Palaeolithic (Djindjian *et al.* 1999). This strongly suggests seasonal movement along rivers. Otte (1979) noted that of 14 Belgian sites he believed to have yielded Aurignacian material, 11 are <50m from an extant river. The location of Aurignacian sites in Britain

© Antiquity Publications Ltd.
and northern France also suggests that large river valleys were a focus of human presence and movement. At Beg ar C’hastel, Beg-Pol and Kent’s Cavern, Aurignacian occupants overlooked palaeo-rivers draining into the Atlantic; at Paviland and Hoyle’s Mouth they overlooked the Bristol Channel River Plain; and at Uphill Quarry and Hyaena Den they were present in a main tributary valley of this latter system (Figure 1).

Although Aurignacian prey varied (Grayson & Delpech 2002), reindeer was undoubtedly important (Mellars 1973), dominating faunal assemblages from Abri Pataud 13 and 14, Le Piage J and Roc de Combe 5 and 7. Interestingly, cementum increment seasonality data for reindeer teeth from the Aurignacian levels 2 and 3 of Trou Magrite (Belgium) indicates the presence of reindeer during winter months, and almost exclusively from late autumn to early spring (Stutz et al. 1995). Stutz et al. (1995: 181) suggest that reindeer (and humans) could have moved from the Meuse basin in spring, following a migration route heading “towards the Atlantic to the west and north-west”. Such a migration route would have encompassed the Channel River Valley. It is therefore plausible that Aurignacian hunters were initially brought into the Channel River Valley, and then to Britain, following these reindeer herds.

East of Britain, only three Central/Western European Aurignacian sites lie on or above 51° N: Balver Höhle and Hermanns Höhle in Germany, and Góra Puławska II in Poland (Flas 2008). All lie on a similar latitude to Paviland and Hoyle’s Mouth and, importantly, none are situated in the flatlands of the Northern European Plain. Rather, they lie in the most northerly part of the upland regions to its south. The landscapes of central and eastern England, where the Aurignacian is absent, resembles the Northern European Plain. Conversely, Wales and south-western and northern England are characterised by an upland topography and steeper river valleys, similar to the Belgian Ardennes, the German Rhineland and the Amorican Massif, all of which have an Aurignacian presence. British Aurignacian hunter-gatherers seem, therefore, to have kept to their preferred landscapes. At >53° N, Ffynnon Beuno and Pin Hole are the most northerly Aurignacian findspots in Western/Central Europe, hinting that occupation of preferred landscapes on Europe’s western fringe may have extended a considerable distance north.

This pattern of upland-restricted Aurignacian occupation may reflect environmental adaptation (Dinnis 2009; Flas 2009). Particularly during the harsh, highly seasonal conditions of Ice Age Europe, a greater variety of fauna and flora can be expected in topographically complex habitats, with some shelter required for even hardy species to survive the winter months. Lacking large lithic points suitable for systematic big game hunting, Aurignacian osseous point weaponry could have instead been designed for exploiting more varied, and smaller, prey. This hunting kit would have been as suited to spearing large fish as to fatally wounding larger-sized mammals.

With a complex internal topography, geography and ecology (Pettitt 2008), the Channel River will have represented perfect terrain for Aurignacian hunter-gatherers. The river and its tributaries would have been a good source of fish, and the valley’s size would have allowed mammalian fauna to traverse or occupy it with ease. Perhaps more importantly, sheltered areas in and around the Channel River Valley could have provided refuge during the winter, and a base from which to expand northwards into upland (i.e. British) terrain during the summer. A similar scenario can easily be envisaged for the now submerged Bristol Channel River Valley, allowing summer expansion into Wales and beyond.
It is probable, then, that much Aurignacian archaeology was deposited in these now submerged valleys. The extant sites are those high enough to have survived Holocene sea level rises. Assuming an Aurignacian presence extending across south-western England, westernmost central England and all of Wales, c. 75 per cent of this area was subsequently glaciated and/or submerged by sea level rise. If Aurignacian terrain actually extended northwards beyond this, or if any of the submerged Channel River area is taken into account, this figure rises further still. Together, Aurignacian landscape choice and subsequent geological processes have conspired to obliterate evidence of Aurignacian activity. What remains, therefore, is an extremely depleted record, biased much more than that of neighbouring regions which were unaffected by these destructive forces. This destruction of evidence must be considered when we attempt to interpret what archaeology we do have.

Occupation and settlement history

The question of how Aurignacian life subsequently developed in Britain is difficult to answer, due to the reduced corpus of material available for study (Table 1). The absence of bladelets from any British site is striking, given the presence of many bladelet core artefacts (*burins busqués*, Paviland burins, carinated burins and thick-nosed scrapers), but unsurprising, since, when complete, most of these bladelets would have been \(\leq 15\) mm in length. Extreme selection of archaeological material during the excavation of British Aurignacian sites is obvious, and is particularly evident at Ffynnon Beuno. Of six extant pieces, only one is \(<25\) mm in maximum dimension, and all are retouched and of ‘textbook’ typological form. Considered together with inconsistencies between the material described by and accessioned by the excavator (Hicks 1886), it is certain that the assemblage was originally much larger.

Despite their absence from British collections, Aurignacian hunter-gatherers were clearly creating small and morphologically very precise bladelets. Well-stratified sites elsewhere show this bladelet industry to be a particularly conspicuous component of later Aurignacian stone-working. Breakage patterns of later Aurignacian bladelets from Le Flageolet I (Dordogne) indicate their use as micro-barbs within a composite weapon system (Hays & Lucas 2001), an interpretation that is commensurate with their delicate size and regular shape. These bladelets would have been hafted laterally, on the shaft of a weapon tipped with either an osseous point or a simple wooden point.

Smaller British lithic findspots, yielding only one or a handful of bladelet core artefacts, were probably sites where weapon maintenance took place, and where cores used to produce fresh barbs were discarded. Uphill Quarry and Hyaena Den may simply have been where broken points were abandoned (Jacobi 2007). Considering this, it is interesting to note the occurrence of flat-nosed scrapers, which would have been entirely suitable for re-/sharpening osseous points, as would a series of concave endscrapers from Paviland, Kent’s Cavern (Figure 3) and Ffynnon Beuno, which are probably Aurignacian (Garrod 1926; Jacobi 2007; Dinnis 2009).

Known Aurignacian artefacts from British sites can therefore all be related to the maintenance of hunting kit. Only at Paviland is there good reason to suspect a greater variety of activities, since here true burins and worked osseous artefacts, some possibly of Aurignacian age, were present. One important corollary of this is that Aurignacian
Research

Rob Dinnis

hunter-gatherer activities in Britain did not differ from elsewhere; the technological consistency of later Aurignacian \textit{burin busqué} bladelet cores in Britain, France and Belgium is remarkable (Dinnis 2009). This is persuasive evidence that environmental conditions in Britain were familiar enough that a significant shift in subsistence strategy was unnecessary.

The duration of the British Aurignacian is one issue where the limited amount of archaeology belies the true history of occupation. Jacobi (1999) and Pettitt (2008) noted the small amount of Aurignacian material in British collections, and an apparent typological uniformity between sites. These observations led them to suggest that the British Aurignacian reflects a single, potentially very brief, event. Certainly, there is less typological variation in the British Aurignacian than in immediately adjacent regions.

Methods of bladelet production, however, suggest greater complexity of settlement. When available raw materials were of satisfactory size and quality, only one complex technique was used at a time to create micro-bladelets (Dinnis 2009). The presence of two complex methods in British collections—the \textit{burin busqué} and Paviland burin methods—should therefore be viewed as evidence for either two phases of occupation or, alternatively, an occupation sufficiently prolonged to have encompassed the period within which one was replaced by the other (Dinnis 2009). Presuming that these two methods were at least approximately contemporary in Britain and Belgium, the time taken for the initiation and adoption of this technological shift over such a large area should certainly be counted in numbers of generations rather than years.

Unlike the \textit{burin busqué}, no Paviland burin assemblages can be used to determine precisely when the method was employed. Circumstantial evidence points to it being more recent than the \textit{burin busqué} technique, which in southern France appears immediately with the switch from ‘scraper’ methods to ‘burin’ methods for bladelet production, e.g. at Abri Pataud levels 8 and 7 (Chiotti 2005). Paviland burins therefore probably post-date \textit{burins busqués}. Commonalities in the technology of both core types are consistent with this interpretation (Dinnis 2008). Accepting this, the Paviland burin method could belong to any period after the \textit{burin busqué} until the very end of the north-western European Aurignacian.

Unfortunately, chronological data are of insufficient quality to date the end phases of the Aurignacian with confidence. Flas (2008) suggests an Aurignacian presence in Belgium and north-western Germany until 28–27 000 BP, whereas Dinnis (2009) has argued that no Aurignacian assemblage post-dates c. 30 000 BP. Flas’s long chronology for the Aurignacian is intriguing, not least given the ‘Red Lady of Paviland’ burial, now dated to c. 29 000 BP and, according to Jacobi \textit{et al.} (2010), older than the British Gravettian. Of course, the burial comes from the same cave which has yielded the largest assemblage of Paviland burins currently known. If the Paviland burin is indeed younger than the \textit{burin busqué}, if the Gravettian of Britain is younger than the Red Lady burial and if, as Flas has argued, the Aurignacian of Northern Europe persists as late as 29 000 BP or later, then the Red Lady burial and Paviland burin bladelet cores may well be broadly contemporary deposits.

Conclusions

Despite evidence for earlier Aurignacian occupation immediately adjacent to Britain, the Aurignacian first appears in Britain c. 32 000 BP, and is identical to contemporary continental
The archaeology of Britain's first modern humans

assemblages. This occupation coincided with—or shortly followed—a particularly long, pronounced warm phase, perhaps bringing favourable environmental conditions to preferred Aurignacian landscapes in the west of Britain. British site assemblages mainly reflect the maintenance of a hunting kit suitable for predation of varied fauna, the same as that used by groups in Belgium and France. The technological similarity of British and Belgian/north-eastern French lithic artefacts is good evidence that Aurignacian groups first entering Britain did so from the east, via the now submerged Channel River Valley—itself potentially a prime area of occupation. The subsequent presence of two preferred methods of bladelet production is best explained as the result of different periods of occupation or, alternatively, that Britain was occupied over a prolonged period of Aurignacian time.

Acknowledgements

Special thanks to Paul Pettitt, Roger Jacobi† and Damien Flas for their unerring support and guidance during my research. I owe thanks to friends and colleagues too numerous to mention, but am particularly grateful to: Steph Swainston for generous help with understanding Paviland; Tom Higham for encouraging me to write this article; Andrew David, Hazel Martingell and Jeff Wallis for allowing me to reproduce their lithic illustrations; Nick Ashton, Jesse Davies, Claire Fisher, Natasha Reynolds and Beccy Scott for very useful comments on the text and help with editing; Craig Williams for the schematic in Figure 1, and to him and Silvia Bello for help with figures; and museum staff across Britain, Belgium and France for their generous hospitality. Many thanks are also due to two anonymous reviewers, whose comments helped to improve the manuscript. Needless to say, these colleagues may or may not agree with the conclusions of the paper, and any mistakes or oversights are my responsibility alone. This research was supported by the Arts and Humanities Research Council, and this paper was made possible by the Leverhulme Trust-funded Ancient Human Occupation of Britain project.

References

© Antiquity Publications Ltd.
The archaeology of Britain's first modern humans

© Antiquity Publications Ltd.

